Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 608
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 264-275, 2024.
Article in Chinese | WPRIM | ID: wpr-999184

ABSTRACT

Fibrosis, a tumor-like lesion between benign tissue and malignant tumor, mostly occurs in the liver, kidney, heart, lung, bone marrow and other organs and tissues. It can affect almost every organ and eventually induce multiple organ failure and cancers, seriously endangering human life. It will be of great importance to prevent cancer if the disease can be opportunely blocked in the fibrotic stage. The pathogenesis of fibrosis is still not completely clear. It is of great clinical significance to study the occurrence, development, and mechanism of fibrosis as well as to screen new therapeutic targets. Enhancer of zeste homolog 2 (EZH2) is mainly located in the nucleus and involved in the formation of the polycomb repressive complex 2. EZH2 is a methyltransferase which makes the lysine on position 27 of histone H3 (H3K27me3) undergo trimethyl modification induces gene silencing through classical or nonclassical actions, so as to inhibit or activate transcription. EZH2 plays a critical role in cell growth, proliferation, differentiation, and apoptosis, which is regulated by different targets and signaling pathways. EZH2 regulates the transformation of myofibroblasts and participates in the fibrosis of multiple organs. Recent studies have shown that EZH2 plays a role in fibrosis-related pathophysiological processes such as epithelial-mesenchymal transition, oxidative stress, and inflammation. EZH2 as the target of fibrosis, EZH2 inhibitors, and EZH2-related traditional Chinese medicine (TCM) formula and active compounds have gradually become hot research directions. EZH2 may be a powerful target for organ fibrosis. Exploring the structure, function, and distribution of EZH2, the role of EZH2 in fibrosis, the EZH2 inhibitors, and TCM formulas and active components targeting EZH2 has great meanings. This paper reviews the research progress in EZH2 and fibrosis, providing new ideas for the diagnosis, treatment, and drug development of fibrosis.

2.
Chinese Journal of Oncology ; (12): 482-489, 2023.
Article in Chinese | WPRIM | ID: wpr-984747

ABSTRACT

Objective: To investigate the effect of acetyl-CoA carboxylase 1 (ACC1) knockdown on the migration of esophageal squamous cell carcinoma (ESCC) KYSE-450 cell and underlying mechanism. Methods: Lentiviral transfection was conducted to establish sh-NC control cell and ACC1 knocking down cell (sh-ACC1). Human siRNA HSP27 and control were transfected by Lipo2000 to get si-HSP27 and si-NC. The selective acetyltransferase P300/CBP inhibitor C646 was used to inhibit histone acetylation and DMSO was used as vehicle control. Transwell assay was performed to detect cell migration. The expression of HSP27 mRNA was examined by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and the expressions of ACC1, H3K9ac, HSP27 and epithelial-mesenchymal transition-related proteins E-cadherin and Vimentin were detected by western blot. Results: The expression level of ACC1 in sh-NC group was higher than that in sh-ACC1 group (P<0.01). The number of cell migration in sh-NC group was (159.00±24.38), lower than (361.80±26.81) in sh-ACC1 group (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-NC group were statistically significant compared with sh-AAC1 group (P<0.05). The migrated cell number in sh-NC+ si-NC group was (189.20±16.02), lower than (371.60±38.40) in sh-ACC1+ si-NC group (P<0.01). The migrated cell number in sh-NC+ si-NC group was higher than that in sh-NC+ si-HSP27 group (152.40±24.30, P<0.01), and the migrated cell number in sh-ACC1+ si-NC group was higher than that in sh-ACC1+ si-HSP27 group (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-NC+ si-NC group were significantly different from those in sh-ACC1+ si-NC and sh-NC+ si-HSP27 groups (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-ACC1+ si-NC group were significantly different from those in sh-ACC1+ si-HSP27 group (P<0.01). After 24 h treatment with C646 at 20 μmmo/L, the migrated cell number in sh-NC+ DMSO group was (190.80±11.95), lower than (395.80±17.10) in sh-ACC1+ DMSO group (P<0.01). The migrated cell number in sh-NC+ DMSO group was lower than that in sh-NC+ C646 group (256.20±23.32, P<0.01). The migrated cell number in sh-ACC1+ DMSO group was higher than that in sh-ACC1+ C646 group (87.80±11.23, P<0.01). The protein expressions of H3K9ac, HSP27, E-cadherin and Vimentin in sh-NC+ DMSO group were significantly different from those in sh-ACC1+ DMSO group and sh-NC+ C646 group (P<0.01). The protein expression levels of H3K9ac, HSP27, E-cadherin and Vimentin in sh-ACC1+ DMSO group were significantly different from those in sh-ACC1+ C646 group (P<0.01). Conclusion: Knockdown of ACC1 promotes the migration of KYSE-450 cell by up-regulating HSP27 and increasing histone acetylation.


Subject(s)
Humans , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Vimentin/metabolism , Dimethyl Sulfoxide , HSP27 Heat-Shock Proteins/metabolism , Histones/metabolism , Cadherins/metabolism , Cell Movement , Cell Line, Tumor , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic
3.
Chinese Journal of Trauma ; (12): 659-664, 2023.
Article in Chinese | WPRIM | ID: wpr-992647

ABSTRACT

Traumatic brain injury (TBI) is a major reason for temporary or permanent dyskinesia and cognitive impairment of the organism. Generally, TBI induces subsequent neuroinflammation to assist cell debris removal and tissue repair and regeneration after injury. However, overactivation or long-term activation of immune cells will exacerbate nerve damage or death, cause cognitive dysfunction, and ultimately lead to neurodegenerative diseases. Therefore, secondary damage caused by persistent inflammation is a key component of TBI pathological process. As the main metabolite of anaerobic glycolysis, lactate is increased after TBI and participates in brain inflammation as an important immune regulatory molecule rather than a metabolic waste. Importantly, histone lysine lactylation as a novel type of histone post-translational modifications (HPTM) derived from lactate allows lactate to participate in the regulation of complex immunopathophysiological processes of the central nervous system after TBI. Further study on the process of histone lactylation and its immune regulation mechanism during TBI may provide new insights for early intervention and improvement of TBI prognosis. Thus, the authors reviewed the role of histone lactylation in the immune regulation of TBI, so as to further elucidate the mechanism of TBI and the explore new warning and prevention measures from the perspective of HPTM.

4.
Chinese Journal of Primary Medicine and Pharmacy ; (12): 87-96, 2023.
Article in Chinese | WPRIM | ID: wpr-991713

ABSTRACT

Objective:To investigate the relationship between histone deacetylase (HDAC) gene polymorphism and type 2 diabetes mellitus (T2DM) in Bai and Han populations in Dali of Yunnan province.Methods:A total of 148 patients with T2DM of Bai and Han nationalities who received treatment in Dali Bai Autonomous Prefecture People's Hospital from May 2019 to March 2021 were included in the T2DM group. An additional 100 healthy controls of Bai and Han nationalities who concurrently received physical examination in the same hospital from May 2019 to December 2020 were included in the normal control group. The susceptibility genes of T2DM were detected using the Taqman MGB probe method. The susceptibility gene loci were amplified using polymerase chain reaction. The whole sequence of susceptibility gene was sequenced.Results:There were no significant differences in the distribution frequencies of rs2530223 genotype, rs11741808 genotype, rs2547547 genotype, and rs1741981 genotype between Bai and Han populations (all P > 0.05). There was a significant difference in blood lipid level between four loci ( t = -1.06, -0.19, 0.39, -2.12, -2.04, 0.16, 1.47, < 0.01, -0.16, -3.17, -2.93, 0.69, -2.58, -2.33, all P < 0.05). There was a significant difference in homeostasis model assessment of insulin resistance between different states (all P < 0.05). The frequency distributions of each genotype and each allele did not differ significantly between healthy control people of Bai nationality and T2DM patients of Bai nationality and between healthy control people of Han nationality and T2DM patients of Han nationality (all P > 0.05). Logistic regression analysis showed that the polymorphism was not an independent risk factor for T2DM. Conclusion:The relationships between HDAC gene polymorphism and T2DM, obesity and dyslipidemia differ between Bai and Han populations.

5.
Journal of Pharmaceutical Analysis ; (6): 127-141, 2023.
Article in Chinese | WPRIM | ID: wpr-991130

ABSTRACT

The reversible and precise temporal and spatial regulation of histone lysine methyltransferases(KMTs)is essential for epigenome homeostasis.The dysregulation of KMTs is associated with tumor initiation,metastasis,chemoresistance,invasiveness,and the immune microenvironment.Therapeutically,their promising effects are being evaluated in diversified preclinical and clinical trials,demonstrating encouraging outcomes in multiple malignancies.In this review,we have updated recent understandings of KMTs'functions and the development of their targeted inhibitors.First,we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis,tumor suppression,and im-mune regulation.In addition,we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors.In summary,we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.

6.
Journal of Pharmaceutical Analysis ; (6): 24-38, 2023.
Article in Chinese | WPRIM | ID: wpr-991122

ABSTRACT

Uveal melanoma(UM)is the most frequent and life-threatening ocular malignancy in adults.Aberrant histone methylation contributes to the abnormal transcriptome during oncogenesis.However,a comprehensive understanding of histone methylation patterns and their therapeutic potential in UM remains enigmatic.Herein,using a systematic epi-drug screening and a high-throughput transcriptome profiling of histone methylation modifiers,we observed that disruptor of telomeric silencing-1-like(DOT1L),a methyltransferase of histone H3 lysine 79(H3K79),was activated in UM,especially in the high-risk group.Concordantly,a systematic epi-drug library screening revealed that DOT1 L inhibitors exhibited salient tumor-selective inhibitory effects on UM cells,both in vitro and in vivo.Combining Cleavage Under Targets and Tagmentation(CUT&Tag),RNA sequencing(RNA-seq),and bioinformatics analysis,we identified that DOT1 L facilitated H3K79 methylation of nicotinate phosphoribosyltransferase(NAPRT)and epigenetically activated its expression.Importantly,NAPRT served as an oncogenic accel-erator by enhancing nicotinamide adenine dinucleotide(NAD+)synthesis.Therapeutically,DOT1L inhi-bition epigenetically silenced NAPRT expression through the diminishment of dimethylation of H3K79(H3K79me2)in the NAPRT promoter,thereby inhibiting the malignant behaviors of UM.Conclusively,our findings delineated an integrated picture of the histone methylation landscape in UM and unveiled a novel DOT1L/NAPRT oncogenic mechanism that bridges transcriptional addiction and metabolic reprogramming.

7.
China Pharmacy ; (12): 1276-1280, 2023.
Article in Chinese | WPRIM | ID: wpr-973634

ABSTRACT

Gliomas are commonly central nervous system tumors. The conventional treatment is surgical resection combined with chemoradiotherapy, but glioma patients often have a poor prognosis. Therefore, there is an urgent need to identify new potential targets in gliomas and develop more effective treatments. Valproic acid has the properties of histone deacetylase inhibitor, which has been proven to have inhibitory effects on various tumors. It is confirmed that valproic acid could promote apoptosis and cell arrest of glioma cells, inhibit cell invasion and glioma stem cells, increase the sensitivity of glioma cells to radiotherapy and chemotherapy by regulating ERK/Akt signaling pathway, Akt/mTOR signaling pathway, and regulating expression levels of RECK, MGMT, Nrf2, PON2, Smad4, GSK3β and other proteins. In addition, valproic acid can also enhance the effectiveness of anticancer drugs by inhibiting the growth of glioma stem cells and inducing their differentiation. In conclusion, valproic acid can inhibit glioma through multiple targeted actions, and may become a new targeted drug for the treatment of glioma.

8.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 534-540, 2023.
Article in Chinese | WPRIM | ID: wpr-973253

ABSTRACT

Diabetic kidney disease (DKD) is one of the most common microvascular complications in patients with diabetes. DKD is also the main cause of end-stage renal failure, with very complex pathogenesis. A large number of experiments have confirmed that epigenetic mechanisms, including histone chemical modifications and lipid metabolites 12/15-lipoxygenase (12/15-LO), are involved in regulating the characteristic pathophysiological process of DKD, based on which, this review further explores the pathogenesis of DKD and provides the new research direction for DKD treatment.

9.
Frontiers of Medicine ; (4): 43-57, 2023.
Article in English | WPRIM | ID: wpr-971633

ABSTRACT

Autoimmune-related skin diseases are a group of disorders with diverse etiology and pathophysiology involved in autoimmunity. Genetics and environmental factors may contribute to the development of these autoimmune disorders. Although the etiology and pathogenesis of these disorders are poorly understood, environmental variables that induce aberrant epigenetic regulations may provide some insights. Epigenetics is the study of heritable mechanisms that regulate gene expression without changing DNA sequences. The most important epigenetic mechanisms are DNA methylation, histone modification, and noncoding RNAs. In this review, we discuss the most recent findings regarding the function of epigenetic mechanisms in autoimmune-related skin disorders, including systemic lupus erythematosus, bullous skin diseases, psoriasis, and systemic sclerosis. These findings will expand our understanding and highlight the possible clinical applications of precision epigenetics approaches.


Subject(s)
Humans , Autoimmune Diseases/genetics , Epigenesis, Genetic , Lupus Erythematosus, Systemic/genetics , DNA Methylation , Psoriasis/genetics
10.
Journal of Central South University(Medical Sciences) ; (12): 172-181, 2023.
Article in English | WPRIM | ID: wpr-971383

ABSTRACT

OBJECTIVES@#Subarachnoid hemorrhage (SAH) is a serious cerebrovascular disease. Early brain injury (EBI) and cerebral vasospasm are the main reasons for poor prognosis of SAH patients. The specific inhibitor of histone deacetylase 6 (HDAC6), tubastatin A (TubA), has been proved to have a definite neuroprotective effect on a variety of animal models of acute and chronic central nervous system diseases. However, the neuroprotective effect of TubA on SAH remains unclear. This study aims to investigate the expression and localization of HDAC6 in the early stage of SAH, and to evaluate the protective effects of TubA on EBI and cerebral vasospasm after SAH and the underlying mechanisms.@*METHODS@#Adult male SD rats were treated with modified internal carotid artery puncture to establish SAH model. In the first part of the experiment, rats were randomly divided into 6 groups: a sham group, a SAH-3 h group, a SAH-6 h group, a SAH-12 h group, a SAH-24 h group, and a SAH-48 h group. At 3, 6, 12, and 24 h after SAH modeling, the injured cerebral cortex of rats in each group was taken for Western blotting to detect the expression of HDAC6. In addition, the distribution of HDAC6 in the cerebral cortex of the injured side was measured by immunofluorescence double staining in SAH-24 h group rats. In the second part, rats were randomly divided into 4 groups: a sham group, a SAH group, a SAH+TubAL group (giving 25 mg/kg TubA), and a SAH+TubAH group (giving 40 mg/kg TubA). At 24 h after modeling, the injured cerebral cortex tissue was taken for Western blotting to detect the expression levels of HDAC6, endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS), terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining to detect apoptosis, and hematoxylin and eosin (HE) staining to detect the diameter of middle cerebral artery.@*RESULTS@#The protein expression of HDAC6 began to increase at 6 h after SAH (P<0.05), peaked at 24 h (P<0.001), and decreased at 48 h, but there was still a difference compared with the sham group (P<0.05). HDAC6 is mainly expressed in the cytoplasm of the neurons. Compared with the sham group, the neurological score was decreased significantly and brain water content was increased significantly in the SAH group (both P<0.01). Compared with the SAH group, the neurological score was increased significantly and brain water content was decreased significantly in the SAH+TubAH group (both P<0.05), while the improvement of the above indexes was not significant in the SAH+TubAL group (both P>0.05). Compared with the sham group, the expression of eNOS was significantly decreased (P<0.01) and the expressions of iNOS and HDAC6 were significantly increased (P<0.05 and P<0.01, respectively) in the SAH group. Compared with the SAH group, the expression of eNOS was significantly increased, and iNOS and HDAC6 were significantly decreased in the SAH+TubA group (all P<0.05). Compared with the SAH group, the number of TUNEL positive cells was significantly decreased and the diameter of middle cerebral artery was significantly increased in the SAH+TubA group (both P<0.05) .@*CONCLUSIONS@#HDAC6 is mainly expressed in neurons and is up-regulated in the cerebral cortex at the early stage of SAH. TubA has protective effects on EBI and cerebral vasospasm in SAH rats by reducing brain edema and cell apoptosis in the early stage of SAH. In addition, its effect of reducing cerebral vasospasm may be related to regulating the expression of eNOS and iNOS.


Subject(s)
Rats , Male , Animals , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/drug therapy , Vasospasm, Intracranial/metabolism , Histone Deacetylase Inhibitors/therapeutic use , Neuroprotective Agents/therapeutic use , Histone Deacetylase 6/pharmacology , Apoptosis , Brain Injuries/drug therapy
11.
International Eye Science ; (12): 193-197, 2023.
Article in Chinese | WPRIM | ID: wpr-960934

ABSTRACT

AIM: To elucidate the effect of histone deacetylase(HDAC)inhibitor suberoylanilide hydroxamic acid(SAHA)on the proliferation of choroidal melanoma(CM)cell line C918 and to explore the related mechanism.METHODS: Inverted fluorescence microscope was used to observe the effect of different concentrations of SAHA(0.625, 1.25 or 2.5 μmol/L)on the morphology of C918 cell. The cell viability was detected by cholecystokinin octapeptide(CCK-8)assay. Plate clone formation assay and EdU staining were carried out to measure the effect of SAHA on the cell proliferation. Meanwhile, the expressions of cell proliferation-related proteins including c-Myc, CyclinA2 and CDK2, and histone deacetylase 7(HDAC7)and fibroblast growth factor 18(FGF18)were detected by Western blot.RESULTS: Compared with the control group, the cell density was reduced in SAHA. SAHA could also promote cell shrinkage, and the inhibition on cell was in a concentration-dependent manner. CCK-8 assay showed that SAHA treatment decreased cell viability in a dose-dependent manner and the inhibition rate was 80% when SAHA at 2.5 μmol/L. Compared with the control group, Western blot showed that SAHA could suppress the expression of cell proliferation proteins including c-Myc, CyclinA2 and CDK2 in a dose-dependent manner. In addition, 1.25 μmol/L SAHA significantly decreased the numbers of EdU staining positive cells and cell clones. More importantly, SAHA could dose-dependently decrease the expression of HDAC7 and FGF18 compared with control group.CONCLUSION: SAHA could inhibit the proliferation of CM cell line C918 by inhibiting the HDAC7/FGF18 signaling pathway.

12.
Chinese Journal of Experimental Ophthalmology ; (12): 939-943, 2023.
Article in Chinese | WPRIM | ID: wpr-990933

ABSTRACT

Myopia has become a serious public health problem, but its pathogenesis is still unclear, and effective interventions are relatively scarce.It is recognized that myopia is influenced by both genetic and environmental factors, in which epigenetics may play a key role.Epigenetics refers to the changes in gene expression and function that do not involve DNA sequence variation.Mainly including DNA methylation, non-coding RNA (microRNA, long non-coding RNA and circular RNA, etc.), histone modification and mRNA modification, epigenetic modifications interact to form a complex regulatory network in the pathophysiological process of myopia.By controlling the process of scleral matrix remodeling, eye cell proliferation and retinal development, the morphological characteristics of the eye are jointly regulated, ultimately affecting the onset and development of myopia.Epigenetics has provided new targets of myopia intervention and has become a hotspot in the field.In this paper, we reviewed the current findings of myopia epigenetics to provide a reference for related research.

13.
Chinese Pediatric Emergency Medicine ; (12): 203-207, 2023.
Article in Chinese | WPRIM | ID: wpr-990503

ABSTRACT

Objective:To investigate the effect of histone deacetylase inhibitor trichostatin A(TSA) on the lipopolysaccharide(LPS)-induced injury and apoptosis of human microvascular endothelial cell(HMEC).Methods:HMECs were used as research cells to establish LPS-induced septic cell model, which were divided into three groups according to different treatments: control group (150 μL of phosphate buffer), LPS group (150 μL of 5 μg/mL LPS), LPS+ TSA group (150 μL of 5 μg/mL LPS and 500 μg/L TSA). After cells of each group were cultured for 24 h and 48 h, the concentration of lactate dehydrogenase(LDH)in the culture supernatant was detected by enzyme-linked immunosorbent assay and the apoptosis rate of HMECs was detected by Annexin V-FTTC/PI staining, then comparison between different groups were made.Results:Compared with the control group, LDH concentration in LPS group increased significantly at 24 h[(4.67±1.27) ng/L vs. (11.57±0.83) ng/L ] and 48 h[(7.93±0.80) ng/L vs. (12.72±0.89) ng/L ]; Compared with LPS group, LDH concentration in LPS + TSA group decreased significantly at 24 h[(6.01±0.29) ng/L ] and 48 h[(5.96±0.27) ng/L ], and the differences were statistically significant ( P<0.05). Compared with the control group, the apoptosis rates of HMEC cells in LPS group were significantly higher at 24 h[(0.92±0.89)% vs. (1.66±0.09)% ] and 48 h[(1.09±0.14)% vs. (5.01±0.16)%]; Compared with LPS group, the apoptosis rate of HMEC cells in LPS + TSA group significantly decreased at 24 h[(1.36±0.01)% ] and 48 h[(4.19±0.23)% ], the differences were statistically significant ( P<0.05). Conclusion:TSA has the protective effect of reducing cell injury and apoptosis in sepsis.

14.
Journal of Leukemia & Lymphoma ; (12): 442-445, 2023.
Article in Chinese | WPRIM | ID: wpr-989005

ABSTRACT

The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase, which is widely studied in histone methylation modification. It can promote epigenetic gene silencing and mediate the occurrence of tumors through a variety of regulatory mechanisms. The gain-of-function and loss-of-function mutations of EZH2 have been confirmed in many cancers. At present, with the extensive attention paid to the regulatory role of EZH2 in epigenetic mechanism, the exact way in which EZH2 imbalance affects the pathogenesis of hematologic malignancies remains to be clarified. This article reviews the pathogenetic role of EZH2 in hematological tumors, and hope to find new targets for the prevention and treatment of hematological tumors.

15.
Acta Academiae Medicinae Sinicae ; (6): 124-128, 2023.
Article in Chinese | WPRIM | ID: wpr-970456

ABSTRACT

Epigenetics refers to heritable changes in gene expression and function without alterations in gene sequences,including DNA methylation,histone modification,and non-coding RNAs.Endometriosis is a benign gynecological disease that affects the fertility and health of reproductive-age women,the etiology of which remains unclear.The recent studies have demonstrated that epigenetics plays a key role in the occurrence and development of endometriosis.This article reviews the research progress in the regulatory mechanism and application of epigenetics in endometriosis.


Subject(s)
Female , Humans , Endometriosis/genetics , Epigenesis, Genetic , DNA Methylation , Protein Processing, Post-Translational
16.
Chinese Journal of Biotechnology ; (12): 149-158, 2023.
Article in Chinese | WPRIM | ID: wpr-970365

ABSTRACT

Chinese hamster ovary (CHO) cells play an irreplaceable role in biopharmaceuticals because the cells can be adapted to grow in suspension cultures and are capable of producing high quality biologics exhibiting human-like post-translational modifications. However, gene expression regulation such as transgene silencing and epigenetic modifications may reduce the recombinant protein production due to the decrease of expression stability of CHO cells. This paper summarized the role of epigenetic modifications in CHO cells, including DNA methylation, histone modification and miRNA, as well as their effects on gene expression regulation.


Subject(s)
Cricetinae , Animals , Humans , Cricetulus , CHO Cells , Epigenesis, Genetic/genetics , DNA Methylation , Gene Expression Regulation , Recombinant Proteins/genetics
17.
Acta Pharmaceutica Sinica B ; (6): 2601-2612, 2023.
Article in English | WPRIM | ID: wpr-982884

ABSTRACT

Epigenetic therapies that cause genome-wide epigenetic alterations, could trigger local interplay between different histone marks, leading to a switch of transcriptional outcome and therapeutic responses of epigenetic treatment. However, in human cancers with diverse oncogenic activation, how oncogenic pathways cooperate with epigenetic modifiers to regulate the histone mark interplay is poorly understood. We herein discover that the hedgehog (Hh) pathway reprograms the histone methylation landscape in breast cancer, especially in triple-negative breast cancer (TNBC). This facilitates the histone acetylation caused by histone deacetylase (HDAC) inhibitors and gives rise to new therapeutic vulnerability of combination therapies. Specifically, overexpression of zinc finger protein of the cerebellum 1 (ZIC1) in breast cancer promotes Hh activation, facilitating the switch of H3K27 methylation (H3K27me) to acetylation (H3K27ac). The mutually exclusive relationship of H3K27me and H3K27ac allows their functional interplay at oncogenic gene locus and switches therapeutic outcomes. Using multiple in vivo breast cancer models including patient-derived TNBC xenograft, we show that Hh signaling-orchestrated H3K27me and H3K27ac interplay tailors combination epigenetic drugs in treating breast cancer. Together, this study reveals the new role of Hh signaling-regulated histone modifications interplay in responding to HDAC inhibitors and suggests new epigenetically-targeted therapeutic solutions for treating TNBC.

18.
Acta Pharmaceutica Sinica B ; (6): 2250-2258, 2023.
Article in English | WPRIM | ID: wpr-982825

ABSTRACT

Entinostat plus exemestane in hormone receptor-positive (HR+) advanced breast cancer (ABC) previously showed encouraging outcomes. This multicenter phase 3 trial evaluated the efficacy and safety of entinostat plus exemestane in Chinese patients with HR + ABC that relapsed/progressed after ≥1 endocrine therapy. Patients were randomized (2:1) to oral exemestane 25 mg/day plus entinostat (n = 235) or placebo (n = 119) 5 mg/week in 28-day cycles. The primary endpoint was the independent radiographic committee (IRC)-assessed progression-free survival (PFS). The median age was 52 (range, 28-75) years and 222 (62.7%) patients were postmenopausal. CDK4/6 inhibitors and fulvestrant were previously used in 23 (6.5%) and 92 (26.0%) patients, respectively. The baseline characteristics were comparable between the entinostat and placebo groups. The median PFS was 6.32 (95% CI, 5.30-9.11) and 3.72 (95% CI, 1.91-5.49) months in the entinostat and placebo groups (HR, 0.76; 95% CI, 0.58-0.98; P = 0.046), respectively. Grade ≥3 adverse events (AEs) occurred in 154 (65.5%) patients in the entinostat group versus 23 (19.3%) in the placebo group, and the most common grade ≥3 treatment-related AEs were neutropenia [103 (43.8%)], thrombocytopenia [20 (8.5%)], and leucopenia [15 (6.4%)]. Entinostat plus exemestane significantly improved PFS compared with exemestane, with generally manageable toxicities in HR + ABC (ClinicalTrials.gov #NCT03538171).

19.
Protein & Cell ; (12): 165-179, 2023.
Article in English | WPRIM | ID: wpr-982538

ABSTRACT

Histone lysine methyltransferases (HKMTs) deposit methyl groups onto lysine residues on histones and play important roles in regulating chromatin structure and gene expression. The structures and functions of HKMTs have been extensively investigated in recent decades, significantly advancing our understanding of the dynamic regulation of histone methylation. Here, we review the recent progress in structural studies of representative HKMTs in complex with nucleosomes (H3K4, H3K27, H3K36, H3K79, and H4K20 methyltransferases), with emphasis on the molecular mechanisms of nucleosome recognition and trans-histone crosstalk by these HKMTs. These structural studies inform HKMTs' roles in tumorigenesis and provide the foundations for developing new therapeutic approaches targeting HKMTs in cancers.


Subject(s)
Nucleosomes , Histones/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Lysine/metabolism , Methyltransferases/metabolism , Methylation
20.
China Journal of Chinese Materia Medica ; (24): 2010-2019, 2023.
Article in Chinese | WPRIM | ID: wpr-981334

ABSTRACT

Chronic heart failure(CHF) has become a worldwide public health problem due to its high morbidity and mortality, which seriously endangers people's lifespan and quality of life. In recent years, the treatment strategy of CHF has shifted its emphasis on short-term improvement and transformation of hemodynamics to long-term repair as well as improvement of the biological properties of heart failure. At present, with the continuous deepening of medical research, it has been found that histone acetylation is closely related to the occurrence and development of CHF. Traditional Chinese medicine, via regulating histone acetylation, delays ventricular remodeling, improves energy metabolism, inhibits fibrosis and cardiomyocyte hypertrophy, and intervenes in the development process of heart failure, thus reducing the mortality and the readmission rate and ultimately improving long-term prognosis. Therefore, this study reviewed the mechanism of histone acetylation in the treatment of heart failure as well as its prevention and treatment with traditional Chinese medicine, to provide reference for clinical treatment of CHF.


Subject(s)
Humans , Medicine, Chinese Traditional , Histones/therapeutic use , Acetylation , Quality of Life , Heart Failure/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL